If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-x-40=0
We add all the numbers together, and all the variables
5x^2-1x-40=0
a = 5; b = -1; c = -40;
Δ = b2-4ac
Δ = -12-4·5·(-40)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{89}}{2*5}=\frac{1-3\sqrt{89}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{89}}{2*5}=\frac{1+3\sqrt{89}}{10} $
| 0.4((x+5)=0.4x+2 | | -2/8w+53=59 | | 15x-25=-4 | | 24=2(x+1)+2(3x+1) | | 0.4(x+5)=0.4x*2 | | (X+5)²+(x-2)²=37 | | 15=2(x-3) | | 2(3x+7)+5=49 | | 24=(x+1)(3x+1) | | 3x+2(-x-5)=35 | | 6x+4=8x-8=180 | | 5y+1=-4 | | 3x+10=4x-10=180 | | 4(-x/2+5)=11 | | 12-2w=16 | | 24=(x+1)+(3x+1) | | 7p^2-7p-(7p)=0 | | 12.5=4x•2.5 | | 5/2.x=55 | | g/12=7 | | m/8=4/2 | | 11(y-2)=77 | | -x-5+5=2(2x-1)-3 | | 8x–4–x=3x+4x–8 | | 2x-13+x+60=180 | | x+107+x+79=172 | | -9+2x=8+7(3-6x) | | (2x-1)(x+3)=2x | | 3(x-8)=2(x+10 | | 100x+8.50=75x+6 | | 5.37=3x+1.9 | | (10x+2)=-14 |